
E-Center Data Retrieval Service (DRS) 10/15/2010

Version 2.3

Previous Versions: 1.006a, 2.001a, 2.2b

Maxim Grigoriev

Introduction

The E-center consists of collection of the loosely coupled applications. It will be kept this way
in order to allow independent development, easy maintenance and support. In order to make
these applications to communicate we assume REST based web services approach.
How data is cached, retrieved from remote perfSONAR-PS(pS-PS) services, archived, pre-
fetched behind the scenes is not covered in this document. In general it is valid to assume
that all data is coming from the certain kind of the remote pS-PS service – Measurement
Archive (MA).
Any resource representing the network measurement data will be easily addressed via
simple URL and retrieved by sending HTTP request – for example to get pinger data for the
end to end path with source and destination pair IP1=131.225.1.1 and IP2=130.224.3.3 one
may send this query:

GET http://<ecenter server
hostname>/data/pinger.json?src_ip=131.225.1.1&dst_ip=130.224.3.3&start=2010-05-
02%20:01:02&end=2010-05-02%20:01:02

 In addition, this document provides description of the more convenient data retrieval request
targeted on the complete End-to-End path coverage.

Basic Concepts
The API uses HTTP GET request type and will return response encoded as JSON,YAML or
XML data and HTTP status codes as:

 200 OK: Success, JSON encoded response is expected

 400 Bad Request: The request was invalid. An accompanying error message will
explain why, see below for more details.

 404 Not Found: The URL requested is invalid or the resource requested, such as a
metadata id, does not exists.

 500 Internal Server Error: Something is terribly broken or misconfigured. Report
this error to the E-Center mailing list.

 502 Bad Gateway: E-Center service is down.

The E-Center DRS API follows REST principles as closely as possible. There is no default
format for the response encoding. The service will send back 404 Error code if format is not
set in the request. One has to specify in what format the body of response is requested. For
example by adding .json to the end of the requested resource path one may expect to
receive JSON encoded response. The client „s API should utilize corresponded JSON parsing
facility available for the language of choice. Or it may request XML or YAML formatted data
structure by adding .xml or .yaml correspondently. Please note all examples of the DRS
responses in this document are formatted for the case of JSON encoding. The JSON
encoding is used by the E-Center front-end.
The easiest way to get data from DRS is to use curl command line tool available on any
UNIX platform. Or utilize any HTTP protocol API library for particular language of choice –
perl, python, java…etc.

Data Retrieval Protocol

Each request is constructed as a specially formed URI with supplied string of parameters.
The most basic resource is data time series.
As was noted above, in case of error the corresponded HTTP status will be returned (500 for
example) and instead of normal response the JSON encoded error message could be utilized
by client application:
Next results are for the example where src_ip and dst_ip are supplied as and the possible
traceroute command would result in this trace:

Traceroute:

 from - 192.12.15.26(lhcprefmon.bnl.gov)

 to - 131.243.24.11(nettest.bnl.gov)

traceroute to 131.243.24.11 (131.243.24.11), 30 hops max, 140 byte packets

 1 mutt.usatlas.bnl.gov (192.12.15.224) 0.538 ms 0.633 ms 0.628 ms

 2 amon.bnl.gov (130.199.3.124) 0.476 ms 0.469 ms 0.593 ms

 3 bnlmr2-bnlsite.es.net (198.124.216.189) 0.424 ms 0.424 ms 0.416 ms

 4 aofacr2-ip-bnlmr2.es.net (134.55.217.142) 2.566 ms 2.548 ms 2.533 ms

 5 bostcr1-ip-aofacr2.es.net (134.55.41.121) 7.460 ms 7.459 ms 7.444 ms

 6 clevcr1-ip-bostcr1.es.net (134.55.41.145) 20.577 ms 20.609 ms 20.524 ms

 7 chiccr1-ip-clevcr1.es.net (134.55.217.54) 29.848 ms 29.827 ms 29.827 ms

 8 kanscr1-ip-chiccr1.es.net (134.55.221.57) 40.235 ms 40.205 ms 40.208 ms

 9 denvcr2-ip-kanscr1.es.net (134.55.209.45) 53.373 ms 53.345 ms 53.350 ms

10 sunncr1-denvcr2.es.net (134.55.220.50) 80.493 ms 80.503 ms 80.479 ms

11 sunnsdn2-sunncr1.es.net (134.55.209.97) 80.458 ms 80.415 ms 80.457 ms

12 slacmr2-ip-sunnsdn2.es.net (134.55.217.1) 80.856 ms 80.831 ms 80.820 ms

13 lblmr2-ip-slacmr2.es.net (134.55.219.9) 81.723 ms 81.674 ms 81.559 ms

14 lbnl-ge-lblmr2.es.net (198.129.224.1) 82.135 ms 82.091 ms 82.090 ms

15 ir2gw.lbl.gov (131.243.128.12) 82.245 ms 82.058 ms 82.042 ms

16 nettest.lbl.gov (131.243.24.11) 81.734 ms 81.728 ms 81.722 ms

__

And partial results (truncated for this document to the first 3 network segments in the trace):

{direct_traceroute: { 92: [{

longitude: "-72.8805",

nodename: "bnl-mr1-bnl-pt1.es.net",
hop_delay: "0.093",
hub: "bnl-mr2",
hop_id: "778",
hop_num: "1",
trace_id: "92",
latitude: "40.8703",
hop_ip: "198.124.238.37",
updated: "1286570606",
netmask: "30",
hops: "12",
},{
longitude: "-74.005",
nodename: "aofacr2-ip-bnlmr2.es.net",
hop_delay: "2.224",
hub: "aofa-cr2",
hop_id: "779",
hop_num: "2",
trace_id: "92",
latitude: "40.72",
hop_ip: "134.55.217.142",
updated: "1286570606",
netmask: "30",
hops: "12",
},{
longitude: "-71.0868",
nodename: "bostcr1-ip-aofacr2.es.net",
hop_delay: "7.089",
hub: "bost-cr1",
hop_id: "780",
hop_num: "3",
trace_id: "92",
latitude: "42.3673",
hop_ip: "134.55.41.121",
updated: "1286570606",
netmask: "30",
hops: "12",

 }] },
reverse_traceroute: {143: [{

longitude: "-122.252",
nodename: "lblmr2-lblpt1.es.net",
hop_delay: "0.093",
hub: "lbl-mr2",
hop_id: "1324",
hop_num: "1",
trace_id: "143",
latitude: "37.8769",
hop_ip: "198.129.254.29",
updated: "1286570736",
netmask: "30",
hops: "12",
},{
longitude: "-122.204",
nodename: "slacmr2-ip-lblmr2.es.net",
hop_delay: "1.128",
hub: "slac-mr2",
hop_id: "1325",
hop_num: "2",
trace_id: "143",
latitude: "37.4211",
hop_ip: "134.55.219.10",
updated: "1286570736",
netmask: "30",
hops: "12",
},{
longitude: "-121.991",
nodename: "sunnsdn2-ip-slacmr2.es.net",
hop_delay: "1.535",
hub: "sunn-sdn2",

hop_id: "1326",
hop_num: "3",
trace_id: "143",
latitude: "37.3739",
hop_ip: "134.55.217.2",
updated: "1286570736",
netmask: "30",
hops: "12",

 }]},
 snmp: { 1325: [

 [1286570430, { utilization: 211551400,
 capacity: 10000000000,
 }

], [1286570580, { utilization: 199693000
 capacity: 10000000000
 }

]
],

 778: [
[1286570430, {utilization: 493038181.33334

 capacity: 10000000000
 }

], [1286570580, {utilization: 2084.47994
 capacity: 10000000000
 }

]
 }
}

Notice that the hop_id=1325 from the traceroute data fragment is used as the key for the
SNMP time series data. If reverse traceroute results are available then it will be present in the
Response data set under the reverse_traceroute key and DRSwill return SNMP data for the
additional hop_ids as well.

Data Request

The request URI construction for data time series retrieval must follow these rules:

ecenter_server_hostname := <hostname of the E-Center data service>;
ipv4 := <ipv4 address, dotted>;
datetime := < YYYY-MM-DD%20hh:mm:ss >;
data_type :=’/’, [‘pinger’|’snmp’|’bwctl’|’owamp’];
response_format := [‘.json’|’.xml’|’.yaml’];
data_request := ‘ GET http://’, ecenter_server_hostname , ‘/data’, data_type?, response_format, ‘?’,
[‘src_ip=’, ipv4|’src_hub=’,string],’&’, [‘dst_ip=’, ipv4|’dst_hub=’,string], (‘&start=’, datetime)?,
(‘&end=’, datetime)?,(‘&resolution=’,integer)?;

Where pinger for example should be used for requesting data from the PingER service. The
start and end parameters should be provided to specify time period for the time series. The
default value for the start is 12 hours ago from the “end” value and for the end is now –
current time in UTC.
When data_type is omitted then DRS will return all available data from all services.
The resolution parameter is optional as well and used to specify number of datapoints to be
returned for each type of data requested. The default value is 100. The DRS will return
average values for the aggregated data points.

As one can see there are two distinctive types of the end-point used for the data requests.
One is based on the provided IPv4 address and another one is HUB based. Where HUB is
the identifier used for the aggregated collection of the end-site pS-PS monitoring services
along with ESnet pS-PS services located at the border of the end-site. The naming scheme
for HUB names is following the ESnet Layer2/3 topology scheme.

Data Response

The response for the data request will follow the next format (in case of JSON response
format, but the data flow is the same for XML or YAML):

data_id := integer;
trace_id := integer;
hop_id := integer;
timestamp := integer;
metric_name :=
[‘minRtt’|’maxRtt’|’medianRtt’|’minIpd’|’maxIpd’|’meanIpd’|’duplicates’|’clp’|iqrIpd’|
’lossPercent’|’throughput’|’jitter’|’lost’|’sent’|’min’|’max’|minttl’|’maxttl’|’dups’|’maxerr’|
’max_delay’|’min_delay’|’timestamp’];
snmp_metric := [’capacity’|’utilization’];
hop_names := [‘hop_id’|‘hop_ip’|’hop_num’|’hop_delay’|’number_hops’|
 ’updated’|’longitude’|’latitude’|’nodename’|’hub’|’trace_id’|’netmask’|’hops’];
data_result := [integer|float|’NULL’];
hop_result=[data_result|ipv4|timestamp];
metric_stat := [metric_name|snmp_metric], ‘:’, data_result;
hop_stat := hop_names, ’:’, hop_result;
data_item := ‘{ direct_traceroute: { ‘, trace_id, ‘:[‘,
 { ‘{‘, hop_stat, { ‘,’, hop_stat }*, ‘}’ }*,
 ‘] }, ’,
 ‘reverse_traceroute: { ‘, trace_id, ‘:[‘,
 { ‘{‘, hop_stat, { ‘,’, hop_stat }*, ‘}’ }*,
 ‘] }, ’,

 { ‘snmp: { ’, hop_id , ‘: [’ ,
 { timestamp , ‘: {‘, metric_stat, { ‘,’, metric_stat }*, ‘}’ }*,
 ‘] },’
 }*,
 { [‘owamp’|’bwctl’|’pinger’], ‘: {‘,
 ‘src_ip: { ‘,
 ‘dst_ip : { ‘,
 { timestamp , ‘: { ‘, metric_stat, { ‘,’, metric_stat }*, ‘}’ }*,
 ‘}
 }
 },’ }*

 ‘}’;

Example of request:

GET http://<ecenter server
hostname>/data/snmp.json?src_ip=131.243.24.11&dst_ip=198.32.44.130&start=2010-06-05
06:01:02&end=2010-06-05 07:02:01

Please note that only utilization (SNMP) data is returned per hop_id. The End-to-End metrics
are returned per source or destination pair (IPv4 address or HUB) and for the whole network
path.

Service Informational Requests

First service request is the status one. One can check if service is running by sending this:

response_format := [‘.json’|’.xml’|’.yaml’];
hub_request := ‘ GET http://’, ecenter_server_hostname , ‘/status’, response_format;

If everything is fine then it responds with { status : ‘ok’ } in case of requested JSON
encoding.
Or your API will receive a HTTP error code.
There is more complete request/response where several metrics about the DRS health could
be requested. It called a health request and it represented as:

health_request := ‘ GET http://’, ecenter_server_hostname , ‘/health’, response_format,],
(‘&start=’, datetime)?,(‘&end=’, datetime)?;

and response is formatted as:

domain_name := <domain part of the hostname – to aggregate service hosts>
health_response := ‘{ time_period: {‘, { [‘owamp’|’bwctl’|’pinger’|’traceroute’], ‘: {‘,
 ‘start: ‘,timestamp, ’, end: ‘,timestamp,’},’ }*, ‘}, ’,
 ‘metadata: {‘, { domain_name, ‘: {‘, {
 [‘owamp’|’bwctl’|’pinger’|’traceroute’], ‘: {‘,
 ‘cached_data_count: ‘,integer,
 ’metadata_count: ‘,integer,’},’ }*, ‘ },’, }*
 ‘ } }’;

Here is the example of the “health” response:

{ time_period: { bwctl: { end: "1287069738",
 start: "1287026538"},

 traceroute: {end: “1287069738”,
 start: “1287026538”},
owamp: {end: "1287069738",
 start: "1287026538"},
pinger: {end: "1287069738",

 start: "1287026538"}
 },

 metadata: {es.net: {bwctl: {cached_data_count: "4",
 metadata_count: “780” },

 traceroute: {cached_data_count: "2",
 metadata_count: “879”},

 owamp: {cached_data_count: "406",
 metadata_count: “1146” },

 pinger: {cached_data_count: "0",
 metadata_count: “1435” }

 }
 }

One ca notice the cached_data_count indicate how many data entries were cached already for
some specific domain and metadata_count is the number of the cached metadata. The later
number is important in understanding if E-Center data collection service were able to acquire
any metadata at all. If counter is 0 then E-Center will not be able to send any data requests to
the remote pS-PS services.

Next is the basic request for the list of the hubs and could be expressed as:

hub_request := ‘ GET http://’, ecenter_server_hostname , ‘/hub’, response_format;

with response formatted according to:

hub_name := <ESnet provided topology id for the HUB – 4 letters short and uppercase>;
hub_response := ‘{‘ , { hub_name, ‘ : { hub_name:‘, hub_name, ‘, latitude:’, float, ‘ longitude: ‘,
float, ‘},’ }+, ‘}’;

Example of the hub request and response:

http://xenmon.fnal.gov:8098/hub.json

{ KANS: { longitude: "-94.5822",

hub_name: "KANS",
latitude: "39.1008",

 },
 ALBU: {

longitude: "-106.647",
hub_name: "ALBU",
latitude: "35.0822",

 }
}

Next request is used to obtain list of the nodes with available traceroute metadata where
node is the originating node for the traceroute – source node:

source_request := ‘ GET http://’, ecenter_server_hostname , ‘/source’, response_format;

and response is formed as:

string := < any character string >;
source_response := ‘[‘ , { ‘{ hub:‘ , string, ‘, hub_name:’, string, ‘, nodename:‘, string, ‘, ip_noted:’,
ipv4 ‘, latitude:’, float, ‘ longitude: ‘, float, ‘, netmask:’, integer, ‘},’ }+, ‘]’;

 To get all available destinations for any of the IPs from the previous response one may use a
destination request:

destination_ip_request := ‘ GET http://’, ecenter_server_hostname , ‘/destination/’, ipv4,
response_format;

and response is formed as:

string := < any character string >;
destination_ip_response := ‘[‘ , { ‘{ hub:‘ , string, ‘, hub_name:’, string, ‘, nodename:‘, string, ‘,
ip_noted:’, ipv4 ‘, latitude:’, float, ‘ longitude: ‘, float, ‘, netmask:’, integer, ‘},’ }+, ‘]’;

Example of the destination request and response (the same example could be shown for
the source request above):

http://xenmon.fnal.gov:8098/destination/134.79.104.208.json
__
[

{
longitude: "-72.8805",
hub: "bnl-mr2",
hub_name: "BNL",
nodename: "bnl-owamp.es.net",
ip_noted: "198.124.238.49",
latitude: "40.8703",
netmask: "24"
}

]

The service request is utilized to get information about all or some pS-PS services cached
by the ECenter.

condition := ‘/’, [‘id’|’ip’|’url’|name’]
service_request := ‘ GET http://’, ecenter_server_hostname , ‘/service’, condition?,
response_format;

Without any conditions it will return all services. And with any condition supplied it will try to
match this condition with particular attribute of the service. In case of successful match it will
return the same data structure but for the shorten list of services.

service_type := [‘pinger’|’traceroute’|’snmp’|’owamp’|’bwctl’|’hLS’];
datetime := < YYYY-MM-DD%20hh:mm:ss >;

service_data := ‘{ service:‘, integer, ‘, name:’, string, ‘, url:’, string, ’, type:’, service_type, ‘,
comments:’, string, ‘, created: ‘, datetime, ‘, updated:’, datetime, ‘, ip_noted: ‘, ipv4, ‘, is_alive: ‘,
[‘0’|’1’], ‘}’;
service_response := ‘[‘, service_data, { ‘,’, service_data }* ‘]’;

Example of the service request and response:

http://xenmon.fnal.gov:8098/service.json

[
 {
 name: "ESnet Home Lookup Service",
 service: "1",
 comments: "ESnet Home Lookup Service (Berkeley, CA. USA)",
 created: "2010-07-06 15:55:17",
 is_alive: "1",
 ip_noted: "198.129.254.242",
 url: http://ps1.es.net:8095/perfSONAR_PS/services/hLS,
 updated: "2010-07-06 15:55:36",
 type: "hLS",
 }
]

Appendix

E-Center DRS Database scheme

--
-
-- Schema for ECenter data
--
-- author: Maxim Grigoriev, 2010, maxim_at_fnal_dot_gov
--
--
drop database if exists ecenter_data;
create database ecenter_data;
grant all privileges on ecenter_data.* to ecenter@localhost identified by 'ecenter2010';
grant select on ecenter_data.* to www@localhost identified by 'www_user';
flush privileges;
use ecenter_data;

--
-- topology hub (something with coordinates, name)
--
--
drop table if exists hub;
CREATE TABLE hub (
hub varchar(32) NOT NULL,
hub_name varchar(32) NOT NULL,
description varchar(100) NOT NULL,
longitude float NULL,
latitude float NULL,
PRIMARY KEY (hub)
) ENGINE=InnoDB DEFAULT CHARSET=latin1 COMMENT='topology hub (esnet)';

--

http://xenmon.fnal.gov:8098/service.json

-- topology layer2 info
--
--
drop table if exists l2_port;
CREATE TABLE l2_port (
l2_urn varchar(512) NOT NULL,
description varchar(100) NOT NULL,
capacity bigint unsigned NOT NULL,
hub varchar(32) NOT NULL,
PRIMARY KEY (l2_urn),
FOREIGN KEY (hub) REFERENCES hub (hub)
) ENGINE=InnoDB DEFAULT CHARSET=latin1 COMMENT='ps-ps topology layer2 info';
--
-- topology layer2 linkage
--
--
drop table if exists l2_link;
CREATE TABLE l2_link (
l2_link bigint unsigned AUTO_INCREMENT NOT NULL,
l2_src_urn varchar(512) NOT NULL,
l2_dst_urn varchar(512) NOT NULL,
PRIMARY KEY (l2_link),
FOREIGN KEY (l2_src_urn) REFERENCES l2_port (l2_urn),
FOREIGN KEY (l2_dst_urn) REFERENCES l2_port (l2_urn)
) ENGINE=InnoDB DEFAULT CHARSET=latin1 COMMENT='ps-ps topology layer2 links';
--
-- nodes - all of them
-- ip_addr supports ipv4 and ipv6 addresses in binary form
--
-- it holds topology info as well via layer2 id (as http://ogf.org/schema/network/topology/base/20070828/ schema describes)
--
-- it set as INET6_PTON('131.225.1.1') and essentially a 16 byte representation of the IP
-- it allows indexing and netblock search, to get original IP address - INET6_NTOP(ip_addr)
-- to see dotted form of ipv4 or ipv6 - select ip_noted
--
--
drop table if exists node;
CREATE TABLE node (
 ip_addr varbinary(16) NOT NULL,
 nodename varchar(255) NULL,
 ip_noted varchar(40) NOT NULL,
 netmask smallint(3) NOT NULL default '32',
 PRIMARY KEY (ip_addr),
 KEY (nodename),
 KEY (ip_noted),
 KEY (netmask)
) ENGINE=InnoDB CHARSET=latin1 COMMENT='nodes';
--
-- topology layer3 mapping to layer2,
-- use netmask from the node table to get all addresses from the block
--
--
drop table if exists l2_l3_map;
CREATE TABLE l2_l3_map (
l2_l3_map bigint unsigned AUTO_INCREMENT NOT NULL,
ip_addr varbinary(16) NOT NULL,
l2_urn varchar(512) NOT NULL,
PRIMARY KEY (l2_l3_map),
FOREIGN KEY (l2_urn) REFERENCES l2_port (l2_urn),
FOREIGN KEY (ip_addr) REFERENCES node (ip_addr)
) ENGINE=InnoDB DEFAULT CHARSET=latin1 COMMENT='ps-ps topology layer2-layer3 mapping';

--
-- list of keywords, stores most recent regexp used to obtain that keyword as well
--
drop table if exists keyword;
CREATE TABLE keyword (
 keyword varchar(255) NOT NULL,
 pattern varchar(255) NULL,

 PRIMARY KEY (keyword)
) ENGINE=InnoDB CHARSET=latin1 COMMENT='project keywords';
--
-- operational table for the most recent status of the service
-- all services are here
--
drop table if exists service;
CREATE TABLE service (
 service bigint unsigned AUTO_INCREMENT NOT NULL,
 name varchar(255) NOT NULL,
 ip_addr varbinary(16) NOT NULL,
 url varchar(255) NOT NULL,
 type varchar(32) NOT NULL DEFAULT 'hLS',
 comments varchar(255) NULL,
 is_alive boolean,
 created TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
 updated TIMESTAMP NOT NULL DEFAULT 0,
 PRIMARY KEY (service),
 UNIQUE KEY url (url),
 KEY is_alive (is_alive),
 FOREIGN KEY (ip_addr) REFERENCES node (ip_addr)
) ENGINE=InnoDB CHARSET=latin1 COMMENT='ps-ps services operational table';
--
-- list of eventtypes
--
drop table if exists eventtype;
CREATE TABLE eventtype (
 ref_id bigint unsigned AUTO_INCREMENT NOT NULL,
 eventtype varchar(255) NULL,
 service bigint unsigned NOT NULL,
 PRIMARY KEY (ref_id),
 UNIQUE KEY eventtype_service (eventtype, service),
 FOREIGN KEY (service) REFERENCES service (service) on DELETE CASCADE ON UPDATE CASCADE
) ENGINE=InnoDB CHARSET=latin1 COMMENT='project keywords';
--
-- keywords_service for many - many rel
--
--
drop table if exists keywords_service;
CREATE TABLE keywords_service (
ref_id bigint unsigned AUTO_INCREMENT NOT NULL,
keyword varchar(255) NOT NULL,
service bigint unsigned NOT NULL,
PRIMARY KEY (ref_id),
UNIQUE KEY key_service (keyword, service),
FOREIGN KEY (keyword) REFERENCES keyword (keyword) on DELETE CASCADE ON UPDATE CASCADE,
FOREIGN KEY (service) REFERENCES service (service) on DELETE CASCADE ON UPDATE CASCADE
)ENGINE=InnoDB CHARSET=latin1 COMMENT='many to many for keywords_services';
--
-- metadata for the service
-- keeping XML in the subject and parameters but extracting end-to-end data
--
-- src - source or interface address depending on type of the service
-- dst - destination address
-- rtr - router address in caseof snmp
--
--
drop table if exists metadata;
CREATE TABLE metadata (
metaid bigint unsigned AUTO_INCREMENT NOT NULL,
src_ip varbinary(16) NOT NULL,
dst_ip varbinary(16) NOT NULL DEFAULT '0',
direction enum('in','out') NOT NULL default 'in',
service bigint unsigned NOT NULL,
subject varchar(1023) NOT NULL DEFAULT '',
parameters varchar(1023) NULL,
PRIMARY KEY (metaid),
KEY (metaid),
FOREIGN KEY (src_ip) REFERENCES node (ip_addr),

FOREIGN KEY (service) REFERENCES service (service) on DELETE CASCADE ON UPDATE CASCADE
) ENGINE=InnoDB CHARSET=latin1 COMMENT='ps-ps metaid provided by each service';
--
-- NEXT TABLES FOR THE DATA CACHE
-- we are going to store pinger, owamp, bwctl, snmp data
-- based on source -> destination pairs
--
-- generic data table - all non-identified data can go here
--
--
drop table if exists data;
CREATE TABLE data (
data bigint unsigned AUTO_INCREMENT NOT NULL,
metaid bigint unsigned NOT NULL,
param varchar(255) NOT NULL,
value float NOT NULL,
PRIMARY KEY (data),
KEY (param),
FOREIGN KEY (metaid) REFERENCES metadata (metaid) on DELETE CASCADE ON UPDATE CASCADE
) ENGINE=InnoDB CHARSET=latin1 COMMENT='ps-ps data cache';
--
-- pinger data storage
--
--
drop table if exists pinger_data;
CREATE TABLE pinger_data (
 pinger_data bigint unsigned AUTO_INCREMENT NOT NULL,
 metaid BIGINT unsigned NOT NULL,
 minRtt float NOT NULL DEFAULT '0.0',
 meanRtt float NOT NULL DEFAULT '0.0',
 medianRtt float NOT NULL DEFAULT '0.0',
 maxRtt float NOT NULL DEFAULT '0.0',
 timestamp bigint(12) unsigned NOT NULL,
 minIpd float NOT NULL DEFAULT '0.0',
 meanIpd float NOT NULL DEFAULT '0.0',
 maxIpd float NOT NULL DEFAULT '0.0',
 duplicates tinyint(1) NOT NULL DEFAULT '0',
 outOfOrder tinyint(1) NOT NULL DEFAULT '0',
 clp float NOT NULL DEFAULT '0.0',
 iqrIpd float NOT NULL DEFAULT '0.0',
 lossPercent float NOT NULL DEFAULT '0.0',
 PRIMARY KEY (pinger_data),
 KEY (timestamp),
 INDEX (meanRtt, medianRtt, lossPercent, meanIpd, clp),
 FOREIGN KEY (metaid) references metadata (metaid) on DELETE CASCADE ON UPDATE CASCADE
) ENGINE=InnoDB CHARSET=latin1 COMMENT='ps-ps pinger data cache';
--
-- BWCTL data storage
--
--
--
drop table if exists bwctl_data;
CREATE TABLE bwctl_data (
 bwctl_data bigint unsigned AUTO_INCREMENT NOT NULL,
 metaid BIGINT unsigned NOT NULL,
 timestamp bigint(12) unsigned NOT NULL,
 throughput float default NULL,
 jitter float default NULL,
 lost int unsigned default NULL,
 sent int unsigned default NULL,
 PRIMARY KEY (bwctl_data),
 KEY (timestamp),
 FOREIGN KEY (metaid) REFERENCES metadata (metaid) on DELETE CASCADE ON UPDATE CASCADE
) ENGINE=InnoDB DEFAULT CHARSET=latin1 COMMENT='ps-ps bwctl data cache';
--
-- OWAMP data storage
--
--
drop table if exists owamp_data;

CREATE TABLE owamp_data (
 owamp_data bigint unsigned AUTO_INCREMENT NOT NULL,
 metaid BIGINT unsigned NOT NULL,
 timestamp bigint(12) unsigned NOT NULL,
 min float NOT NULL DEFAULT '0.0',
 max float NOT NULL DEFAULT '0.0',
 minttl tinyint(3) unsigned NOT NULL DEFAULT '0',
 maxttl tinyint(3) unsigned NOT NULL DEFAULT '0',
 sent int unsigned NOT NULL DEFAULT '0',
 lost int unsigned NOT NULL DEFAULT '0',
 dups int unsigned NOT NULL DEFAULT '0',
 maxerr float NOT NULL DEFAULT '0.0',
 PRIMARY KEY (owamp_data),
 KEY (timestamp),
 FOREIGN KEY (metaid) REFERENCES metadata (metaid) on DELETE CASCADE ON UPDATE CASCADE
) ENGINE=InnoDB DEFAULT CHARSET=latin1 COMMENT='ps-ps owamp data cache';
--
-- SNMP data storage
-- knows about layer2 topologies
--
drop table if exists snmp_data;
CREATE TABLE snmp_data (
 snmp_data bigint unsigned AUTO_INCREMENT NOT NULL,
 metaid BIGINT unsigned NOT NULL,
 timestamp bigint(12) unsigned NOT NULL,
 utilization float NOT NULL DEFAULT '0.0',
 errors int unsigned NOT NULL DEFAULT '0',
 drops int unsigned NOT NULL DEFAULT '0',
 PRIMARY KEY (snmp_data),
 KEY (timestamp),\
 UNIQUE KEY meta_time (metaid, timestamp),
 FOREIGN KEY (metaid) REFERENCES metadata (metaid) on DELETE CASCADE ON UPDATE CASCADE
) ENGINE=InnoDB DEFAULT CHARSET=latin1 COMMENT='ps-ps snmp data cache';
--
-- traceroute data table - update only timestamp if nothing changed (delay < 10%)
--
--
--
drop table if exists traceroute_data;
CREATE TABLE traceroute_data (
trace_id bigint unsigned AUTO_INCREMENT NOT NULL,
metaid BIGINT unsigned NOT NULL,
number_hops tinyint(3) NOT NULL DEFAULT '1',
updated bigint(12) unsigned NOT NULL,
PRIMARY KEY (trace_id),
UNIQUE KEY updated_metaid (metaid, updated),
FOREIGN KEY (metaid) references metadata (metaid) on DELETE CASCADE ON UPDATE CASCADE
) ENGINE=InnoDB DEFAULT CHARSET=latin1 COMMENT='ps-ps traceroute';
--
-- per hop info
--
--
--
drop table if exists hop;
CREATE TABLE hop (
hop_id bigint unsigned AUTO_INCREMENT NOT NULL,
trace_id bigint unsigned NOT NULL,
hop_ip varbinary(16) NOT NULL,
hop_num tinyint(3) NOT NULL DEFAULT '1',
hop_delay float NOT NULL DEFAULT '0.0',
PRIMARY KEY (hop_id),
FOREIGN KEY (trace_id) REFERENCES traceroute_data(trace_id),
FOREIGN KEY (hop_ip) REFERENCES node(ip_addr)
) ENGINE=InnoDB DEFAULT CHARSET=latin1 COMMENT='ps-ps traceroute hops';

